The C-terminal domain of Plasmodium falciparum merozoite surface protein 3 self-assembles into alpha-helical coiled coil tetramer.
نویسندگان
چکیده
Proteins located on the surface of the pathogenic malaria parasite Plasmodium falciparum are objects of intensive studies due to their important role in the invasion of human cells and the accessibility to host antibodies thus making these proteins attractive vaccine candidates. One of these proteins, merozoite surface protein 3 (MSP3) represents a leading component among vaccine candidates; however, little is known about its structure and function. Our biophysical studies suggest that the 40 residue C-terminal domain of MSP3 protein self-assembles into a four-stranded alpha-helical coiled coil structure where alpha-helices are packed "side-by-side". A bioinformatics analysis provides an extended list of known and putative proteins from different species of Plasmodium which have such MSP3-like C-terminal domains. This finding allowed us to extend some conclusions of our studies to a larger group of the malaria surface proteins. Possible structural and functional roles of these highly conserved oligomerization domains in the intact merozoite surface proteins are discussed.
منابع مشابه
Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain.
Plasmodium merozoites are covered with a palisade layer of proteins that are arranged as organized bundles or appear as protruding spikes by electron microscopy. Here we present a third Plasmodium vivax merozoite surface protein, PvMSP-3, which is associated with but not anchored in the merozoite membrane. Serum from a P. vivax immune squirrel monkey was used to screen a lambdagt11 P. vivax gen...
متن کاملPlasmodium vivax Antigen Discovery Based on Alpha-Helical Coiled Coil Protein Motif
Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were ch...
متن کاملSequence Conservation in Plasmodium falciparum α-Helical Coiled Coil Domains Proposed for Vaccine Development
BACKGROUND The availability of the P. falciparum genome has led to novel ways to identify potential vaccine candidates. A new approach for antigen discovery based on the bioinformatic selection of heptad repeat motifs corresponding to alpha-helical coiled coil structures yielded promising results. To elucidate the question about the relationship between the coiled coil motifs and their sequence...
متن کاملGenetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran
Abstract Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...
متن کاملDissection of merozoite surface protein 3, a representative of a family of Plasmodium falciparum surface proteins, reveals an oligomeric and highly elongated molecule.
Vaccination with the merozoite surface protein 3 (MSP3) of Plasmodium falciparum protects against infection in primates and is under development as a vaccine against malaria in humans. MSP3 is secreted and associates with the parasite membrane but lacks a predicted transmembrane domain or a glycosylphosphatidylinositol anchor. Its role in the invasion of red blood cells is unclear. To study MSP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and biochemical parasitology
دوره 165 2 شماره
صفحات -
تاریخ انتشار 2009